L’intelligenza artificiale: strumenti e trattamenti personalizzati in medicina

da Lorenzo De Santis matricedigitale.it
0 commenti 2 minuti leggi

La ricerca nel campo dell’intelligenza artificiale (AI) continua a progredire, offrendo soluzioni innovative per la gestione delle cure mediche. Gli studi condotti dalla Weill Cornell Medicine e dalla Rockefeller University esplorano l’uso del Reinforcement Learning (RL) per ottimizzare strategie terapeutiche e di nuove reti neurali adattate per dati strutturati come grafi, aprendo la strada a cure personalizzate.

Reinforcement Learning per la gestione di patologie croniche e psichiatriche

Il Reinforcement Learning è una branca dell’AI che consente a modelli di apprendere decisioni ottimali basate su feedback. Utilizzato per eccellere in giochi come scacchi e Go, il RL potrebbe rivoluzionare il trattamento di malattie croniche e psichiatriche, adattandosi in tempo reale alle condizioni dei pazienti e ai risultati delle cure.

Uno studio recente ha introdotto Episodes of Care (EpiCare), il primo benchmark di RL specifico per la sanità. Testando cinque modelli di RL avanzati, i ricercatori hanno dimostrato che, pur superando i metodi standard di cura, questi modelli richiedono enormi quantità di dati simulati per funzionare, rendendo complesso il loro utilizzo nella pratica clinica. Inoltre, strumenti di valutazione basati su dati storici, come gli Off-Policy Evaluation (OPE), si sono dimostrati inaccurati in scenari sanitari reali.

Dr. Logan Grosenick, che ha guidato lo studio, ha sottolineato l’importanza di EpiCare per sviluppare modelli più affidabili e adattabili alla medicina. Migliorare questi strumenti rappresenta un passo cruciale verso trattamenti personalizzati basati sull’AI.

Reti neurali per analisi di dati strutturati a grafo

In un altro studio presentato alla NeurIPS 2024, il team di Dr. Grosenick ha adattato le Convolutional Neural Networks (CNNs) per analizzare dati strutturati a grafo, come reti cerebrali o genetiche. Le CNN, già fondamentali per il riconoscimento delle immagini, sono state generalizzate per modellare graficamente connessioni complesse.

Questa tecnologia, denominata Quantized Graph Convolutional Networks (QuantNets), permette di analizzare i grafi rappresentati da nodi e collegamenti, come quelli tra regioni cerebrali durante il trattamento di depressione o disturbo ossessivo-compulsivo. Il modello è stato applicato a dati EEG con l’obiettivo di identificare dinamiche di connettività cerebrale, consentendo analisi più dettagliate e personalizzate del trattamento.

Annunci

Le QuantNets hanno potenziale in diversi campi, dalla modellazione del comportamento animale al tracciamento delle espressioni facciali umane per analisi emotive.

Gli studi della Weill Cornell Medicine dimostrano come l’AI stia avvicinando la sanità a un modello più personalizzato. Sia il Reinforcement Learning per strategie terapeutiche che le reti QuantNets per analisi grafiche sono passi significativi verso cure innovative e adattabili. La ricerca continua a sviluppare strumenti affidabili, con l’obiettivo di migliorare la qualità della vita dei pazienti.

Si può anche come

MatriceDigitale.it – Copyright © 2024, Livio Varriale – Registrazione Tribunale di Napoli n° 60 del 18/11/2021. – P.IVA IT10498911212 Privacy Policy e Cookies

Developed with love by Giuseppe Ferrara