Robotica
PoCo: nuova tecnica per robot multiuso più efficaci
Tempo di lettura: 2 minuti. Scopri come la tecnica PoCo del MIT migliora l’efficacia dei robot multiuso combinando dati eterogenei per un addestramento più versatile.
Gli scienziati del MIT hanno sviluppato una nuova tecnica per addestrare robot multiuso utilizzando una combinazione di dati provenienti da diverse fonti: questa tecnica, chiamata Policy Composition (PoCo), mira a superare le limitazioni degli attuali metodi di addestramento robotico, che spesso utilizzano un solo tipo di dati e quindi faticano a generalizzare in ambienti nuovi.
Combattere l’Eterogeneità dei Dati
I dataset robotici esistenti variano ampiamente in modalità — alcuni includono immagini a colori, mentre altri sono composti da impronte tattili, per esempio. Inoltre, i dati possono essere raccolti in domini diversi, come simulazioni o dimostrazioni umane. Ogni dataset può catturare un compito e un ambiente unici, rendendo difficile integrare efficientemente tutti questi dati in un unico modello di machine learning.
Per affrontare questa sfida, i ricercatori del MIT hanno sviluppato PoCo, che combina fonti di dati multiple attraverso domini, modalità e compiti utilizzando modelli generativi noti come modelli di diffusione.
Modelli di diffusione e Politiche Generali
Un modello di diffusione viene addestrato separatamente per imparare una strategia (o politica) per completare un compito utilizzando un dataset specifico. Le politiche apprese dai modelli di diffusione vengono poi combinate in una politica generale che consente a un robot di eseguire più compiti in vari ambienti. Questa combinazione delle politiche individuali viene perfezionata iterativamente in modo che la politica combinata soddisfi gli obiettivi di ciascuna politica individuale.
Vantaggi della Policy Composition
Uno dei principali benefici di questo approccio è la possibilità di combinare politiche per ottenere il meglio di entrambi i mondi. Ad esempio, una politica addestrata su dati del mondo reale potrebbe essere in grado di ottenere maggiore destrezza, mentre una politica addestrata su simulazione potrebbe essere in grado di generalizzare meglio. La tecnica PoCo ha portato a un miglioramento del 20% nelle prestazioni dei compiti rispetto alle tecniche di base.
Applicazioni e Futuri Sviluppi
I ricercatori hanno testato PoCo sia in simulazioni che su bracci robotici reali, eseguendo una varietà di compiti con utensili, come utilizzare un martello per piantare un chiodo o girare un oggetto con una spatola. In futuro, vogliono applicare questa tecnica a compiti a lungo termine dove un robot deve utilizzare più strumenti in sequenza. Inoltre, intendono incorporare dataset robotici più ampi per migliorare ulteriormente le prestazioni.
L’approccio PoCo rappresenta un passo significativo verso l’uso efficace di dati eterogenei per addestrare robot multiuso. Questo metodo apre nuove possibilità per lo sviluppo di robot in grado di adattarsi rapidamente a nuovi compiti e ambienti, aumentando l’efficienza e la versatilità nell’uso degli strumenti.
Robotica
Microrobot magnetico nel trattamento dell’infertilità femminile
Tempo di lettura: 2 minuti. Microrobot magnetico per l’infertilità: una soluzione meno invasiva per trattare le ostruzioni delle tube di Falloppio con precisione e sicurezza.
Il laboratorio SIAT Magnetic Soft Microrobots Lab ha sviluppato un’innovativa soluzione per trattare le ostruzioni delle tube di Falloppio, una delle principali cause di infertilità femminile, con microrobot. Questo approccio si basa su microscopici robot magnetici, progettati per rimuovere i blocchi tubarici con precisione e minimizzare l’invasività delle procedure tradizionali.
Come funziona il microrobot magnetico
Il dispositivo, descritto nello studio pubblicato su AIP Advances, utilizza una struttura a vite elicoidale con un corpo centrale cilindrico e una coda a forma di disco. Queste caratteristiche lo rendono altamente manovrabile attraverso canali stretti, come quelli che simulano le tube di Falloppio.
Realizzato in resina fotosensibile rivestita con uno strato sottile di ferro, il microrobot acquisisce proprietà magnetiche che gli consentono di essere controllato tramite un campo magnetico esterno. Quando il campo viene attivato, il robot ruota generando un movimento traslatorio. Questo consente al robot di navigare con precisione e di rimuovere ostruzioni, come cluster di cellule, frammentandole e spingendo i detriti verso la coda del dispositivo tramite un campo vorticoso.
Efficienza e risultati dei test
In laboratorio, il microrobot è stato testato in un canale di vetro che simula una tuba di Falloppio ostruita. Durante l’esperimento, ha dimostrato di essere efficace nel rimuovere blocchi simulati, evidenziando un elevato livello di precisione e stabilità del movimento.
Questa tecnologia rappresenta un’alternativa meno invasiva rispetto alle procedure tradizionali, che utilizzano cateteri e guide metalliche per rimuovere le ostruzioni. Inoltre, il design a vite elicoidale e la capacità di navigazione precisa lo rendono adatto per operare in strutture anatomiche delicate.
Prospettive future
Il team di ricerca sta lavorando per ridurre ulteriormente le dimensioni del microrobot, migliorandone l’efficienza e integrando sistemi di imaging in tempo reale per monitorarne i movimenti durante le procedure mediche. Inoltre, i ricercatori stanno esplorando applicazioni chirurgiche più ampie, che includono l’automazione del controllo e l’uso del microrobot in altre procedure minimamente invasive.
Secondo il responsabile dello studio, Haifeng Xu, l’obiettivo a lungo termine è fornire soluzioni meno invasive e più efficaci per trattare l’infertilità e altre patologie, migliorando significativamente la qualità della vita dei pazienti con l’uso di microrobot.
Il microrobot magnetico rappresenta una rivoluzione nel trattamento dell’infertilità, offrendo un approccio innovativo per affrontare le ostruzioni delle tube di Falloppio. Questa tecnologia apre la strada a nuovi orizzonti per la medicina minimamente invasiva, con potenziali applicazioni in molteplici ambiti chirurgici.
Robotica
Materiali intelligenti: il futuro delle reti neurali meccaniche
Tempo di lettura: 2 minuti. Le reti neurali meccaniche dell’Università del Michigan promettono materiali capaci di apprendere e adattarsi: innovazioni che cambiano il futuro della tecnologia.
L’idea che i materiali possano apprendere e risolvere problemi sembra provenire da un racconto di fantascienza, ma i ricercatori dell’Università del Michigan stanno trasformando questa visione in realtà. Grazie a un algoritmo di backpropagation adattato ai materiali fisici, le reti neurali meccaniche (MNN) possono ora apprendere e rispondere a stimoli in modo autonomo. Questo progresso apre nuove prospettive in campi come l’ingegneria aerospaziale, la diagnostica medica e il design intelligente.
Le reti neurali meccaniche: come funzionano
Le MNN sono strutture fisiche, come reticoli di gomma 3D, progettate per rispondere a input meccanici in modo intelligente. A differenza dei tradizionali sistemi digitali, queste reti utilizzano forze fisiche, come il peso applicato su un materiale, per elaborare informazioni. Il risultato è una deformazione visibile che rappresenta l’output.
L’algoritmo sviluppato da Shuaifeng Li e Xiaoming Mao si basa sulla backpropagation, un approccio ampiamente utilizzato nelle reti neurali digitali per l’apprendimento. Applicando questa tecnica alle MNN, i ricercatori hanno dimostrato che è possibile addestrare materiali a rispondere in modo specifico a diversi stimoli. Per esempio, un reticolo è stato “formato” per distinguere tra specie di iris basandosi su caratteristiche come la dimensione delle foglie.
Le potenzialità delle MNN
Le reti neurali meccaniche offrono possibilità entusiasmanti per il futuro:
- Adattabilità aerospaziale: immaginate ali di aereo che si modellano automaticamente in base alle condizioni del vento, migliorando l’efficienza del volo.
- Strutture diagnostiche: materiali intelligenti potrebbero rilevare danni strutturali in edifici o infrastrutture critiche, avvisando tempestivamente gli operatori.
- Innovazioni nell’apprendimento: l’integrazione di onde sonore come input consentirebbe alle MNN di elaborare informazioni più complesse, aumentando significativamente la loro utilità.
Per il momento, l’adattamento dei materiali avviene manualmente, ma i progressi nella ricerca sui polimeri e sulle nanoparticelle potrebbero rendere le MNN pienamente autonome nel prossimo futuro.
Un ponte tra biologia e tecnologia
Un aspetto particolarmente intrigante di questa ricerca è il suo potenziale per comprendere i processi di apprendimento nei sistemi biologici. I ricercatori suggeriscono che l’algoritmo di backpropagation potrebbe fornire indizi su come i neuroni biologici elaborano e apprendono informazioni. Questo collegamento tra biologia e scienza dei materiali potrebbe aprire nuove strade nello studio delle reti neurali umane e animali.
La creazione di materiali che apprendono autonomamente rappresenta un cambio di paradigma. Le reti neurali meccaniche promettono di rivoluzionare settori chiave, dalla progettazione di macchine al miglioramento della sicurezza delle infrastrutture. Con il continuo avanzamento della ricerca, il confine tra il fisico e il digitale si assottiglia, dando vita a un futuro in cui i materiali non solo reagiscono, ma pensano e si adattano.
Robotica
RAVEN: il drone ispirato agli uccelli che salta per decollare
Tempo di lettura: 2 minuti. RAVEN: il drone ispirato agli uccelli dell’EPFL combina salti e volo per operazioni in ambienti complessi. Innovazione per soccorsi, ispezioni e consegne.
Il laboratorio di sistemi intelligenti dell’EPFL, guidato da Dario Floreano, ha sviluppato RAVEN, un drone innovativo ispirato agli uccelli per decollare senza bisogno di una pista. Con gambe robotiche multifunzionali, il dispositivo apre nuove possibilità per le operazioni in ambienti difficili, migliorando accesso, mobilità e autonomia.
Un design ispirato agli uccelli
RAVEN, acronimo di Robotic Avian-inspired Vehicle for multiple ENvironments, imita le capacità degli uccelli di passare agilmente tra camminare, saltare e volare. Il progetto si ispira ai corvi e ai corvi imperiali osservati nel campus dell’EPFL. Le gambe robotiche, leggere e multifunzionali, combinano molle e motori che replicano i tendini e i muscoli aviani. Questa soluzione consente al drone di camminare, saltare fino a 26 cm di altezza e decollare con efficienza energetica senza bisogno di attrezzature aggiuntive.
Efficienza energetica e applicazioni pratiche
La ricerca ha dimostrato che il salto iniziale per il decollo ottimizza l’uso dell’energia cinetica e potenziale, risultando più efficiente rispetto ad altre modalità. RAVEN è stato progettato per operare in ambienti complessi, come zone di disastri o aree con terreni accidentati, dove droni tradizionali incontrano difficoltà.
Le sue capacità multimodali lo rendono ideale per missioni di soccorso, ispezioni in luoghi confinati o operazioni di consegna in spazi ristretti, eliminando la necessità di un’interazione umana diretta.
Collaborazioni scientifiche e sviluppi futuri
Il progetto è frutto di una collaborazione tra l’EPFL, il laboratorio di neuromeccanica dell’Università della California e il BioRobotics Lab. Gli studi non solo migliorano la comprensione del movimento multimodale negli animali volanti, ma puntano a perfezionare il controllo e il design delle gambe per adattarsi a una gamma più ampia di ambienti di atterraggio.
RAVEN rappresenta un passo avanti nella progettazione di droni agili e versatili. Con il suo approccio innovativo ispirato alla natura, promette di ridefinire il modo in cui i droni operano in contesti difficili, aprendo nuove possibilità per applicazioni pratiche e missioni critiche.
-
Smartphone1 settimana ago
Realme GT 7 Pro vs Motorola Edge 50 Ultra: quale scegliere?
-
Smartphone1 settimana ago
OnePlus 13 vs Google Pixel 9 Pro XL: scegliere o aspettare?
-
Smartphone1 settimana ago
Samsung Galaxy Z Flip 7: il debutto dell’Exynos 2500
-
Smartphone7 giorni ago
Redmi Note 14 Pro+ vs 13 Pro+: quale scegliere?
-
Sicurezza Informatica5 giorni ago
BadBox su IoT, Telegram e Viber: Germania e Russia rischiano
-
Economia1 settimana ago
Controversie e investimenti globali: Apple, Google e TikTok
-
Sicurezza Informatica10 ore ago
Nvidia, SonicWall e Apache Struts: vulnerabilità critiche e soluzioni
-
Sicurezza Informatica6 giorni ago
PUMAKIT: analisi del RootKit malware Linux